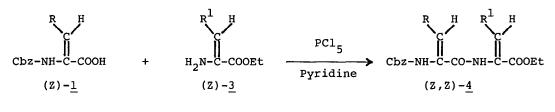
A FACILE DEHYDRODIPEPTIDE SYNTHESIS BY THE COUPLING BETWEEN TWO α -DEHYDROAMINO ACIDS

Chung-gi Shin, ^{*} Yasuchika Yonezawa, and Juji Yoshimura[†] Laboratory of Organic Chemistry, Kanagawa University, Kanagawaku, Yokohama 221 [†]Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midoriku, Yokohama 227, Japan

<u>Summary</u>: The direct coupling of N-Cbz- α -dehydroamino acid with N-free- α -dehydroamino acid ethyl ester was carried out by the acid chloride method to give a number of dehydrodipeptides.


Recently, increasing interests are being shown in the structure, biological activity, and synthesis of dehydropeptide (DHP), containing one or more α -dehydro-amino acid (DHA) residues, which are very important constituents in a number of antibiotic and phytotoxic peptides.¹⁻³

In the preceding paper,⁴⁾ we reported that the direct coupling of L- α -amino acid ester with N-benzyloxycarbonyl (Cbz)-DHA (<u>1</u>) as a carboxyl component by the mixed anhydride and DCC procedures gave various α -Cbz-amino-(Z)- α -alkenoylamino acid esters (<u>2</u>). Here, we describe a facile synthesis of DHP by one pot coupling between two different DHA.

To a solution of $(2)-\underline{1}$ (10 mmol) in dry THF (20 ml) was successively added portionwise with stirring PCl₅ (11 mmol) below 5^oC, and then after 20 minutes a chilled solution of ethyl (2)- α -amino- α -alkenoate (3; 10 mmol)⁵) in dry pyridine (15 ml) also dropwise below 5^oC. After the reaction mixture was stirred for 3 h at room temperature, and then poured into ice-water (100 ml). The resulting aqueous solution was extracted three times with ethyl acetate (200 ml). The extracts were successively washed once with 3M-HCl and three times with water, and then dried over anhydrous Na₂SO₄. After evaporation of ethyl acetate under

4085

reduced pressure, the residual syrup was purified on a silica gel column using benzene-ethyl acetate (8 : 1 v/v) as eluent to give a pure syrup or crystals in ca. 50% yield. The compounds obtained were assigned to be ethyl α -Cbz-amino-(Z)- α -alkenoylamino-(Z)- α -alkenoate (<u>4</u>).

R = alkyl group. Cbz = COOCH₂C₆H₅

Table 1. Yields, physical constants, and spectral data of $(Z,Z)-\underline{4}$.

Compound		Yield	V- 00	IR, cm^{-1}	$ \begin{array}{c} & & \text{NMR, } \delta \text{ in } \text{CDCl}_3 \end{array} \\ \hline \textbf{R}-\textbf{CH}= (\textbf{J}_{Hz}) \textbf{R}^1-\textbf{CH}= (\textbf{J}_{Hz}) \qquad \textbf{NH} \end{array} $				
R	R ¹	(%)	мр С	C=C	R-CH=	(J _{Hz})	$R^1-C\underline{H}=$	(J _{Hz})	NH
СНЗ	с ₂ н ₅	41	syrup ^a	1680	6.77q	(7.5),	6.68t	(7.5),	7.30, 8.60
і-С ₃ Н7	с ₂ н ₅	43	syrup ^a	1685	6.78đ	(10.5),	6.42t	(7.5),	6.80, 7.82
с ₂ н ₅	^{n-C} 3 ^H 7	51	syrup ^a	1685	6.70t	(7.5),	6.50t	(7.5),	6.88, 7.70
CH3	i−C ₃ H ₇	65	67-68 ^b	1680	6.70q	(7.5),	6.60d	(10.5),	6.80, 7.70

a) Colorless syrup. b) Colorless needles from cyclohexane. c) Recorded in KBr.

Moreover, another preparative method of <u>4</u> has been investigated utillizing the base catalyzed β -elimination of (Z)-<u>2</u> with a hydroxyl or mercapto group as a leaving group. The results will be reported and discussed elsewhere.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education.

<u>R_e_f_e_r_e_n_c_e_s</u>

- 1) T.Takita, T.Tamura, and H.Taniyama, <u>J. Biochem., 81</u>, 1759 (1977).
- H.Umezawa, T.Takita, and T.Shiba, Ed., "Bioactive Peptides produced by Microorganisms", Kodansha Ltd., Tokyo, 1978.
- 3) Y.Shimohigashi and N.Izumiya, Yuki Gosei Kyokaishi, <u>36</u>, 1023 (1978).
- 4) C.Shin, Y.Yonezawa, K.Unoki, and J.Yoshimura, Tetrahedron Lett., 1979, 1049.
- C.Shin, Y.Yonezawa, K.Unoki, and j.Yoshimura, <u>Bull. Chem. Soc. Jpn.</u>, <u>52</u>, 1659 (1979).

(Received in Japan 27 June 1979)